Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Autoxidation of Reduced Horse Heart Cytochrome c Catalyzed by Cardiolipin-Containing Membranes.

Visible circular dichroism, absorption, and fluorescence spectroscopy were used to probe the binding of horse heart ferrocytochrome c to anionic cardiolipin (CL) head groups on the surface of 1,1',2,2'-tetraoleoyl cardiolipin (TOCL)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (20%:80%) liposomes in an aerobic environment. We found that ferrocytochrome c undergoes a conformational transition upon binding that leads to complete oxidation of the protein at intermediate and high CL concentrations. At low lipid concentrations, the protein maintains a structure that is only slightly different from its native one, whereas an ensemble of misligated predominantly hexacoordinated low-spin states become increasingly populated at high lipid concentrations. A minor fraction of conformations with either high- or quantum-mixed-spin states were detected at a CL to protein ratio of 200 (the largest one investigated). The population of the non-native state is less pronounced than that found for cytochrome c-CL interactions initiated with oxidized cytochrome c. Under anaerobic conditions, the protein maintains its reduced state but still undergoes some conformational change upon binding to CL head groups on the liposome surface. Our data suggest that CL-containing liposomes function as catalysts by reducing the activation barrier for a Fe2+ → O2 electron transfer. Adding NaCl to the existing cytochrome-liposome mixtures under aerobic conditions inhibits protein autoxidation of ferrocytochrome c and stabilizes the reduced state of the membrane-bound protein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app