Add like
Add dislike
Add to saved papers

Negative Electro-conductance in Suspended 2D WS 2 Nanoscale Devices.

We study the in situ electro-conductance in nanoscale electronic devices composed of suspended monolayer WS2 with metal electrodes inside an aberration-corrected transmission electron microscope. Monitoring the conductance changes when the device is exposed to the electron beam of 80 keV energy reveals a reversible decrease in conductivity with increasing beam current density. The response time of the electro-conductance when exposed to the electron beam is substantially faster than the recovery time when the beam is turned off. We propose a charge trap model that accounts for excitation of electrons into the conduction band and localized trap states from energy supplied by inelastic scattering of incident 80 keV electrons. These results show how monolayer transition metal dichalcogenide 2D semiconductors can be used as transparent direct electron detectors in ultrathin nanoscale devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app