Add like
Add dislike
Add to saved papers

Emissive H-Aggregates of an Ultrafast Molecular Rotor: A Promising Platform for Sensing Heparin.

Constructing "turn on" fluorescent probes for heparin, a most widely used anticoagulant in clinics, from commercially available materials is of great importance, but remains challenging. Here, we report the formation of a rarely observed emissive H-aggregate of an ultrafast molecular rotor dye, Thioflavin-T, in the presence of heparin, which provides an excellent platform for simple, economic and rapid fluorescence turn-on sensing of heparin. Generally, H-aggregates are considered as serious problem in the field of biomolecular sensing, owing to their poorly emissive nature resulting from excitonic interaction. To the best of our knowledge, this is the first report, where contrastingly, the turn-on emission from the H-aggregates has been utilized in the biomolecule sensing scheme, and enables a very efficient and selective detection of a vital biomolecule and a drug with its extensive medical applications, i.e., heparin. Our sensor system offers several advantages including, emission in the biologically advantageous red-region, dual sensing, i.e., both by fluorimetry and colorimetry, and most importantly constructed from in-expensive commercially available dye molecule, which is expected to impart a large impact on the sensing field of heparin. Our system displays good performance in complex biological media of serum samples. The novel Thioflavin-T aggregate emission could be also used to probe the interaction of heparin with its only clinically approved antidote, Protamine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app