Add like
Add dislike
Add to saved papers

In Silico Discovery and Validation of Amide Based Small Molecule Targeting the Enzymatic Site of Shiga Toxin.

Shiga toxin (Stx), a category B biothreat agent, is a ribosome inactivating protein and toxic to human and animals. Here, we designed and synthesized small molecules that block the active site of the Stx A subunit. On the basis of binding energy, 20 molecules were selected for synthesis and evaluation. These molecules were primarily screened using fluorescence-based thermal shift assay and in vitro in Vero cells. Among 32 molecules (including 12 reported), six molecules offered protection with IC50 of 2.60-23.90 μM. 4-Nitro-N-[2-(2-phenylsulfanylethylamino)ethyl]benzamide hydrochloride is the most potent inhibitor with IC50 at 7.96 μM and selectivity index of 22.23 and is better than any known small molecule inhibitor of Stx. Preincubation with Stx offered full protection against Shiga toxin in mice. Surface plasmon resonance assay further confirmed that these molecules bind specifically to Stx A subunit. Further optimization is continued to identify a potential candidate which will be in vivo effective.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app