JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Comprehensive Computational Analysis for the Binding Modes of Hepatitis C Virus NS5A Inhibitors: The Question of Symmetry.

ACS Infectious Diseases 2016 November 12
Direct-acting antivirals (DAAs) form the current standard of care (SOC) against hepatitis C virus (HCV). These drugs selectively target the viral proteins, offering a unique mechanism to avoid toxicity, to increase their efficacy, and to evolve from decades of interferon- and ribavirin-based therapy. Among the promising HCV targets for DAAs is the NS5A protein, and daclatasvir (DCV) forms a first-in-class compound that selectively targets this protein. Despite the exceptional potency of DCV (∼picomolar IC50 ) and although several DCV derivatives have been approved for human use or are close to approval, the exact mode of action of these drugs is still incomplete. This is simply due to the vast complexity of cocrystallizing DCV with NS5A in the absence of two amphipathic helices that are required for DCV binding. In this context, computational modeling provides a unique alternative to solve this problem. Here, we build upon our recent discovery of a completely symmetrical interaction between DCV and NS5A and investigate the mode of binding of six other structures similar to DCV. The selected compounds include both symmetric and asymmetric molecules. In addition, we show that our model correlates very well with mutations that can confer resistance to DCV. The current study enhances our understanding of the mode of action of this class of HCV inhibitors and helps in defining the origin of resistance to these drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app