Add like
Add dislike
Add to saved papers

Genomic Control of Retinal Cell Number: Challenges, Protocol, and Results.

This chapter considers some of the challenges in obtaining accurate and consistent estimates of neuronal population size in the mouse retina, in order to identify the genetic control of cell number through QTL mapping and candidate gene analysis. We first discuss a variety of best practices for analyzing large numbers of recombinant inbred strains of mice over the course of a year in order to amass a satisfactory dataset for QTL mapping. We then consider the relative merits of using average cell density versus estimated total cell number as the target trait to be assessed, and why estimates of heritability may differ for these two traits when studying the retina in whole-mount preparations. Using our dataset on cell number for 12 different retinal cell types across the AXB/BXA recombinant inbred strain set as an example, we briefly review the QTL identified and their relationship to one another. Finally, we discuss our strategies for parsing QTL in order to identify prospective candidate genes, and how those candidates may in turn be dissected to identify causal regulatory or coding variants. By identifying the genetic determinants of nerve cell number in this fashion, we can then explore their roles in modulating developmental processes that underlie the formation of the retinal architecture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app