Add like
Add dislike
Add to saved papers

Significance of low mTORC1 activity in defining the characteristics of brain tumor stem cells.

Neuro-oncology 2016 December 9
BACKGROUND: The significance of mammalian target of rapamycin complex 1 (mTORC1) activity in the maintenance of cancer stem cells (CSCs) remains controversial. Previous findings showed that mTORC1 activation depleted the population of leukemia stem cells in leukemia, while maintaining the stemness in pancreatic CSCs. The purpose of this study was to examine the currently unknown role and significance of mTORC1 activity in brain tumor stem cells (BTSCs).

METHODS: Basal mTORC1 activity and its kinetics were investigated in BTSC clones isolated from patients with glioblastoma and their differentiated progenies (DIFFs). The effects of nutrient deprivation and the mTORC1 inhibitors on cell proliferation were compared between the BTSCs and DIFFs. Tissue sections from patients with brain gliomas were examined for expression of BTSC markers and mTORC1 activity by immunohistochemistry.

RESULTS: BTSCs presented lower basal mTORC1 activity under each culture condition tested and a more rapid decline of mTORC1 activity after nutrient deprivation than observed in DIFFs. The self-renewal capacity of BTSCs was unaffected by mTORC1 inhibition, whereas it effectively suppressed DIFF proliferation. In agreement, immunohistochemical staining of glioma tissues revealed low mTORC1 activity in tumor cells positive for BTSC markers. In in vitro culture, BTSCs exhibited resistance to the antitumor agent temozolomide.

CONCLUSIONS: Our findings indicated the importance of low mTORC1 activity in maintaining the undifferentiated state of BTSCs, implicating the relevance of manipulating mTORC1 activity when developing future strategies that target BTSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app