JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rhythmic wrist movements facilitate the soleus H-reflex and non-voluntary air-stepping in humans.

Neuroscience Letters 2017 January 19
Neural coupling between the upper and lower limbs during human walking is supported by modulation of cross-limb reflexes and the presence of rhythmic activity in the proximal arm muscles. Nevertheless, the involvement of distal arm muscles in cyclic movements and sensorimotor neuromodulation is also suggested given their step-synchronized activation in many locomotor-related tasks (e.g., swimming, skiing, climbing, cycling, crawling, etc.). Here we investigated the effect of rhythmic wrist movements, separately and in conjunction with arm swinging, on the characteristics of non-voluntary cyclic leg movements evoked by muscle vibration in a gravity neutral position and on the soleus H-reflex of the stationary legs. For the H-reflex modulation, five conditions were compared: stationary arms, voluntary alternating upper limb swinging, combined upper limb and wrist motion, wrist movements only and motion of the upper limbs with addition of load. Rhythmic wrist movements significantly facilitated the amplitude of non-voluntary leg oscillations, including ankle joint oscillations, and the H-reflex. The latter effect was related to rhythmicity of wrist motion rather than to a simple extra tension in the upper limb muscles (a kind of the Jendrassik manoeuvre) since adding resistance to arm oscillations (without flexion-extension in the wrist joint) had an opposite inhibitory effect on the H-reflex. Our results further support the existence of connections between the distal parts of the upper and lower extremities at the neural level, suggesting that wrist joint movements can be an important component of motor neurorehabilitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app