JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protective effect of propofol on noise-induced hearing loss.

Brain Research 2017 Februrary 16
PURPOSE: Iatrogenic noise produced by mastoid or craniotomy drills may cause hearing damage, which is induced by the generation of reactive oxygen species (ROS) and the reduction of cochlear blood flow (CoBF). This study investigated whether propofol could reduce noise-induced hearing loss (NIHL) in a guinea pig model.

METHODS: Sixty-four male pigmented guinea pigs were randomly and equally divided into 4 groups: control, noise, propofol and propofol+noise. Propofol was infused intravenously for 20min prior to noise exposure with a loading dose of 5mg·kg-1 for 5min and a maintenance infusion of 20mg·kg-1 ·h-1 for 135min. For noise exposure, an octave band noise at a 124dB sound pressure level (SPL) was administered to animals for 2h. The mean arterial pressure (MAP) and CoBF were monitored continuously. Auditory function was measured by the level of distortion product otoacoustic emission (DPOAE) before and at 1h, 72h and 240h after noise exposure. Cochlear levels of 8-iso-Prostaglandin F2alpha (8-iso-PGF2α) were measured immediately after the termination of noise exposure. Cochlear silver nitrate staining and outer hair cell (OHC) counting were performed after the final functional test.

RESULTS: Noise exposure caused decreases in the CoBF and DPOAE amplitudes, over-generation of 8-iso-PGF2α and the loss of OHCs. Pre-treatment with propofol significantly increased the CoBF and DPOAE amplitudes, decreased 8-iso-PGF2α and the loss of OHCs.

CONCLUSIONS: Propofol exerted protective effects against NIHL in this animal model by suppressing a lipid peroxidation reaction and improving CoBF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app