Add like
Add dislike
Add to saved papers

Mutual Diffusion Driven NMR: a new approach for the analysis of mixtures by spatially resolved NMR spectroscopy.

We introduce a new approach for resolving the NMR spectra of mixtures that relies on the mutual diffusion of dissolved species when a concentration gradient is established within the NMR tube. This is achieved by cooling down a biphasic mixture of triethylamine and deuterated water below its mixing temperature, where a single phase is expected. Until equilibrium is reached, a gradient of concentration, from 'pure' triethylamine to 'pure' water, establishes within the tube. The amount of time required to reach this equilibrium is controlled by the mutual diffusion coefficient of both species. Moreover, a gradient of concentration exists for each additional compound dissolved in this system, related to the partition coefficient for that compound in the original biphasic state. Using slice selective experiments, it was possible to measure these concentration gradients and use them to separate signals from all the present species. We show the results acquired for a mixture composed of n-octanol, methanol, acetonitrile and benzene and compare them with those obtained by pulse field gradient NMR. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app