Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength.

Scientific Reports 2016 December 9
Metasurfaces are ideal candidates for conformal wave manipulation on curved objects due to their low profiles and rich functionalities. Here we design and analyze conformal metasurfaces for practical optical applications at 532 nm visible band for the first time. The inclusions are silicon disk nanoantennas embedded in a flexible supporting layer of polydimethylsiloxane (PDMS). They behave as local phase controllers in subwavelength dimensions for successful modification of electromagnetic responses point by point, with merits of high efficiency, at visible regime, ultrathin films, good tolerance to the incidence angle and the grid stretching due to the curvy substrate. An efficient modeling technique based on field equivalence principle is systematically proposed for characterizing metasurfaces with huge arrays of nanoantennas oriented in a conformal manner. Utilizing the robust nanoantenna inclusions and benefiting from the powerful analyzing tool, we successfully demonstrate the superior performances of the conformal metasurfaces in two specific areas, with one for lensing and compensation of spherical aberration, and the other carpet cloak, both at 532 nm visible spectrum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app