Add like
Add dislike
Add to saved papers

Function of myosin during entry and egress of equid herpesvirus type 1 in primary murine neurons.

Equid herpesvirus type 1 (EHV-1) is a major pathogen of horses with a worldwide distribution, which can cause various clinical signs ranging from mild respiratory disease to neurological disorders. To initiate an effective infection, EHV-1 evolved a broad spectrum of mechanisms exploiting the host cell, including its actin filaments. An actin-myosin-driven transport has been described to precede cellular entry of different viruses. Therefore, in the present study we investigated the role of actin motor protein - myosin, during replication of two EHV-1 strains: Jan-E (wild-type EHV-1 strain isolated from aborted equine fetus) and Rac-H (attenuated strain highly adapted in cell cultures in vitro) in primary murine neurons. In order to investigate this, we used two inhibitors: blebbistatin (BLB; non-muscle myosin II inhibitor) and 2,3-butanedione monoxime (BDM; inhibitor of myosin ATPase). Our results demonstrated that limitation of Jan-E EHV-1 replication occurred in cells treated with myosin inhibitor, which confirmed the important role of actin motor proteins during the entry and egress of EHV-1 virions. Application of blebbistatin did not affect Rac-H EHV-1 replication, while BDM caused reduction of replication in murine neurons. Based on these results it can be assumed that EHV-1 virion movement was myosin-dependent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app