Journal Article
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Frontal, Striatal, and Medial Temporal Sensitivity to Value Distinguishes Risk-Taking from Risk-Aversive Older Adults during Decision Making.

Journal of Neuroscience 2016 December 8
Aging compromises the frontal, striatal, and medial temporal areas of the reward system, impeding accurate value representation and feedback processing critical for decision making. However, substantial variability characterizes age-related effects on the brain so that some older individuals evince clear neurocognitive declines whereas others are spared. Moreover, the functional correlates of normative individual differences in older-adult value-based decision making remain unclear. We performed a functional magnetic resonance imaging study in 173 human older adults during a lottery choice task in which costly to more desirable stakes were depicted using low to high expected values (EVs) of points. Across trials that varied in EVs, participants decided to accept or decline the offered stakes to maximize total accumulated points. We found that greater age was associated with less optimal decisions, accepting stakes when losses were likely and declining stakes when gains were likely, and was associated with increased frontal activity for costlier stakes. Critically, risk preferences varied substantially across older adults and neural sensitivity to EVs in the frontal, striatal, and medial temporal areas dissociated risk-aversive from risk-taking individuals. Specifically, risk-averters increased neural responses to increasing EVs as stakes became more desirable, whereas risk-takers increased neural responses with decreasing EV as stakes became more costly. Risk preference also modulated striatal responses during feedback with risk-takers showing more positive responses to gains compared with risk-averters. Our findings highlight the frontal, striatal, and medial temporal areas as key neural loci in which individual differences differentially affect value-based decision-making ability in older adults.

SIGNIFICANCE STATEMENT: Frontal, striatal, and medial temporal functions implicated in value-based decision processing of rewards and costs undergo substantial age-related changes. However, age effects on brain function and cognition differ across individuals. How this normative variation relates to older-adult value-based decision making is unclear. We found that although the ability make optimal decisions declines with age, there is still much individual variability in how this deterioration occurs. Critically, whereas risk-averters showed increased neural activity to increasingly valuable stakes in frontal, striatal, and medial temporal areas, risk-takers instead increased activity as stakes became more costly. Such distinct functional decision-making processing in these brain regions across normative older adults may reflect individual differences in susceptibility to age-related brain changes associated with incipient cognitive impairment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app