Add like
Add dislike
Add to saved papers

Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting.

STATEMENT OF PROBLEM: Cobalt-chromium (Co-Cr) alloys have been widely used for metal-ceramic fixed prostheses and can be fabricated using conventionally cast or new computer-aided technology. However, the effect of different manufacturing methods on the metal-ceramic bond strength needs further evaluation.

PURPOSE: The purpose of this in vitro study was to evaluate the metal-ceramic bond strength of a Co-Cr alloy made by casting, milling, and selective laser melting (SLM).

MATERIAL AND METHODS: Co-Cr specimens (25×3×0.5 mm) were prepared using a cast, milled, or SLM method and layered with ceramic (8×3×1.1 mm). Metal-ceramic bond strength was measured by a 3-point bend test according to ISO9693. The area fraction of adherence porcelain (AFAP) was determined by measuring the Si content of the specimens with scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The metal-ceramic bond strength and AFAP results were analyzed using 1-way analysis of variance and the Bonferroni post hoc test (α=.05). SEM/EDS and metallurgic microscopy were also used to study the specimens' morphology, elemental composition, and metallurgic structure.

RESULTS: No significant differences (P>.05) were found for the bond strength among cast, milled, and SLM Co-Cr alloys. The milled and SLM groups showed significantly more porcelain adherence than the cast group (P<.001). The surface morphologies and oxidation characters of cast, milled, and SLM Co-Cr alloys were similar, whereas the metallurgic structures were different.

CONCLUSIONS: The bond strength between ceramics and Co-Cr alloys is independent of the manufacturing method. However, milling- and SLM-produced alloys had better porcelain adherence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app