Add like
Add dislike
Add to saved papers

Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions.

Water Research 2017 Februrary 2
Humic acid (HA) occurs ubiquitously in the subsurface environments and is well-known to play a critical role in the fate and transport of ferrihydrite nanoparticles (NPs) and NPs-associated contaminants. Under anoxic conditions, HA can readily be reduced by microorganisms or geochemical reducing species, and the mechanisms and kinetics of ferrihydrite reduction by reduced HA (HAred ) are well-documented; however, the role of these redox reactions on the transport of ferrihydrite NPs is largely underestimated. This study provides new knowledge regarding the role of HA (both reduced HA (HAred ) and oxidized HA (HAox )) of environmentally relevant concentrations (0-50 mg C/L) on the transport of ferrihydrite NPs in anoxic sand columns. Our findings show that, regardless of the redox state, the presence of a low concentration of HA (3 mg C/L) inhibited ferrihydrite NP's transport due to enhanced aggregation (and deposition) between positively charged ferrihydrite NPs and negatively charged HA molecules. In contrast, higher HA (both HAred and HAox ) concentration (≥10 mg C/L) significantly enhanced the mobility of ferrihydrite NPs, primarily due to the enhanced electrostatic and steric stabilization originating from excessively adsorbed HA molecules. Interestingly, the transport of ferrihydrite NPs is substantially lower in the presence of HAred than in the presence of HAox . This distinct effect (HAred vs. HAox ) on the particle transport is attributed to the fact that reductive dissolution of ferrihydrite NPs occurs in the presence of HAred (ferrihydrite dissolves and thus total breakthrough decreases), but not in the presence of HAox . Furthermore, the abatement extent of ferrihydrite NPs transport triggered by the presence of HAred is dependent on dissolved HAred concentration. Taken together, our findings provide direct, and much needed insights into the distinct roles of redox state of HA on the transport of redox-sensitive metal-bearing NPs in porous media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app