Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

L-Met Activates Arabidopsis GLR Ca 2+ Channels Upstream of ROS Production and Regulates Stomatal Movement.

Cell Reports 2016 December 7
Plant glutamate receptor homologs (GLRs) have long been proposed to function as ligand-gated Ca2+ channels, but no in planta evidence has been provided. Here, we present genetic evidence that Arabidopsis GLR3.1 and GLR3.5 form Ca2+ channels activated by L-methionine (L-Met) at physiological concentrations and regulate stomatal apertures and plant growth. The glr3.1/3.5 mutations resulted in a lower cytosolic Ca2+ level, defective Ca2+ -induced stomatal closure, and Ca2+ -deficient growth disorder, all of which involved L-Met. Patch-clamp analyses of guard cells showed that GLR3.1/3.5 Ca2+ channels are activated specifically by L-Met, with the activation abolished in glr3.1/3.5. Moreover, GLR3.1/3.5 Ca2+ channels are distinct from previously characterized ROS-activated Ca2+ channels and act upstream of ROS, providing Ca2+ transients necessary for the activation of NADPH oxidases. Our data indicate that GLR3.1/3.5 constitute L-Met-activated Ca2+ channels responsible for maintaining basal [Ca2+ ]cyt , play a pivotal role in plant growth, and act upstream of ROS, thereby regulating stomatal aperture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app