Add like
Add dislike
Add to saved papers

Influence of Implant Surface Texture Design on Peri-Acetabular Bone Ingrowth: A Mechanobiology Based Finite Element Analysis.

The fixation of uncemented acetabular components largely depends on the amount of bone ingrowth, which is influenced by the design of the implant surface texture. The objective of this numerical study is to evaluate the effect of these implant texture design factors on bone ingrowth around an acetabular component. The novelty of this study lies in comparative finite element (FE) analysis of 3D microscale models of the implant-bone interface, considering patient-specific mechanical environment, host bone material property and implant-bone relative displacement, in combination with sequential mechanoregulatory algorithm and design of experiment (DOE) based statistical framework. Results indicated that the bone ingrowth process was inhibited due to an increase in interbead spacing from 200 μm to 600 μm and bead diameter from 1000 μm to 1500 μm and a reduction in bead height from 900 μm to 600 μm. Bead height, a main effect, was found to have a predominant influence on bone ingrowth. Among the interaction effects, the combination of bead height and bead diameter was found to have a pronounced influence on bone ingrowth process. A combination of low interbead spacing (P = 200 μm), low bead diameter (D = 1000 μm), and high bead height (H = 900 μm) facilitated peri-acetabular bone ingrowth and an increase in average Young's modulus of newly formed tissue layer. Hence, such a surface texture design seemed to provide improved fixation of the acetabular component.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app