Add like
Add dislike
Add to saved papers

Total Synthesis of Mycobacterium tuberculosis Dideoxymycobactin-838 and Stereoisomers: Diverse CD1a-Restricted T Cells Display a Common Hierarchy of Lipopeptide Recognition.

Mycobacterium tuberculosis produces dideoxymycobactin-838 (DDM-838), a lipopeptide that potently activates T cells upon binding to the MHC-like antigen-presenting molecule CD1a. M. tuberculosis produces DDM-838 in only trace amounts and a previous solid-phase synthesis provided sub-milligram quantities. We describe a high-yielding solution-phase synthesis of DDM-838 that features a Mitsunobu substitution that avoids yield-limiting epimerization at lysine during esterification, and amidation conditions that prevent double-bond isomerization of the Z-C20:1 acyl chain, and provides material with equivalent antigenicity to natural DDM-838. Isomers of DDM-838 that varied in stereochemistry at the central lysine and the C20:1 acyl chain were compared for their ability to be recognised by CD1a-restricted T cell receptors (TCRs). These TCRs, derived from unrelated human donors, exhibited a similar spectrum of reactivity towards the panel of DDM-838 isomers, highlighting the exquisite sensitivity of lipopeptide-reactive T cells for the natural DDM stereochemistry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app