Add like
Add dislike
Add to saved papers

Functional Species Encapsulated in Nitrogen-Doped Porous Carbon as a Highly Efficient Catalyst for the Oxygen Reduction Reaction.

The scarcity, high cost, and poor stability of precious metal-based electrocatalysts have stimulated the development of novel non-precious metal catalysts for the oxygen reduction reaction (ORR) for use in fuel cells and metal-air batteries. Here, we fabricated in situ a hybrid material (Co-W-C/N) with functional species (tungsten carbide and cobalt nanoparticles) encapsulated in an N-doped porous carbon framework, through a facile multi-constituent co-assembly method combined with subsequent annealing treatment. The unique structure favors the anchoring active nanoparticles and facilitates mass transfer steps. The homogenously distributed carbide nanoparticles and adjacent Co-N-C sites lead to the electrocatalytic synergism for the ORR. The existence of Co and W can promote the graphitization of the carbon matrix. Benefiting from its structural and material superiority, the Co-W-C/N electrocatalyst exhibits excellent electrocatalytic activity (with a half-wave potential of 0.774 V vs. reversible hydrogen electrode (RHE)), high stability (96.3 % of the initial current remaining after 9000 s of continuous operation), and good immunity against methanol in alkaline media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app