Add like
Add dislike
Add to saved papers

Hemodiafiltration-A Technique for Physiological Correction of Priming Solution in Pediatric Cardiac Surgery: An In Vitro Study.

Artificial Organs 2017 August
Pediatric cardiopulmonary bypass (CPB) circuit invariably requires priming with packed red blood cells (PRBCs). Metabolic composition of stored PRBCs is unphysiological and becomes worse with increasing duration of storage. It is recommended to correct these abnormalities before initiation of CPB. We tested the hypothesis that hemodiafiltration of the prime with 0.45% saline is sufficient for reducing the metabolic load and reaching a physiologic state. In an in vitro study, 100 mL of blood each from 45 units of PRBCs stored for 3-20 days were used for priming the 45 neonatal CPB circuits. Based upon the method used for removal of excess crystalloid from the prime, circuits were divided into three groups. Group 1: Direct removal through manifold line. Group 2: Ultrafiltration of prime. Group 3: Hemodiafiltration of the prime. Blood gas analyses were obtained from the PRBCs and from the prime before and after removal of crystalloid. Both direct removal of crystalloid and ultrafiltration resulted in significant reduction in biochemical and metabolic load of blood (P < 0.001). However, the final composition of the prime was far from being physiological. Hemodiafiltration resulted in improvement of metabolic parameters to near physiological range (lactate: 33.8 ± 4.44 vs. 14 ± 2.53 mg/dL, pH: 7.05 ± 0.15 vs. 7.34 ± 0.06, bicarbonates: 4.83 ± 0.59 vs. 27.6 ± 2.94 meq/L; P < 0.001). Similarly, sodium (147.76 ± 12.73 vs. 144.6 ± 5.96 meq/L) and potassium (9.6 ± 2.83 vs. 4.23 ± 0.37 meq/L) also changed significantly (P < 0.001) to near physiologic range. Hemodiafiltraion of final prime is a simple, efficients and rapid method of correcting the biochemical parameters and reducing the metabolic load of stored PRBCs towards the physiological range before initiating the CPB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app