Add like
Add dislike
Add to saved papers

Global protein expression analysis of molecular markers of DS-1-47, a component of implantation-promoting traditional chinese medicine.

This study investigated the molecular markers of DS-1-47, a component of an implantation- promoting traditional Chinese medicine consisting of Astragalus mongholicus, Atractylodes macrocephala, Scutellaria baicalensis and Dipsacales, in an attempt to clarify the molecular mechanism and action targets of DS-1-47. Controlled ovarian stimulation (COS) method was used to establish the implantation dysfunction models of mice. Animals were divided into normal pregnant group, COS model group and DS-1-47 group. Laser capture microdissection-double dimensional electrophoresis-mass spectrum (LCM-DE-MS) was used to analyze the uterine protein molecules that were possibly involved in the promotion of implantation. Twenty-three proteins in DS-1-47 group were significantly changed as compared to those in COS model group, with 7 proteins down-regulated and 16 proteins up-regulated. Except for some constituent proteins, the down-regulated proteins included collagen α-1 (VI) chain, keratin 7, keratin 14, myosin regulatory light chain 12B, myosin light polypeptide 9, heat shock protein β-7, and C-U-editing enzyme APOBEC-2; the up-regulated proteins included apolipoprotein A-I, calcium regulated protein-3, proliferating cell nuclear antigen, L-xylulose reductase, and calcium binding protein. These 23 proteins that were regulated by DS-1-47 represented a broad diversity of molecule functions. The down-regulated proteins were associated with stress and immune response, and those up-regulated proteins were related to proliferation. It was suggested that these proteins were important in regulating the uterine environment for the blastocyst implantation. By identification of DS-1-47 markers, proteomic analysis coupled with functional assays is demonstrated to be a promising approach to better understand the molecular mechanism of traditional Chinese medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app