Add like
Add dislike
Add to saved papers

TPPU protects tau from H 2 O 2 -induced hyperphosphorylation in HEK293/tau cells by regulating PI3K/AKT/GSK-3β pathway.

Neurofibrillary pathology of abnormally hyperphosphorylated tau is a hallmark of Alzheimer's disease (AD) and other tauopathies. Phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3 beta (GSK-3β) signaling pathway is pivotal for tau phosphorylation. Inhibition of soluble epoxide hydrolase (sEH) metabolism has been shown to effectively increase the accumulation of epoxyeicosatrienoic acids (EETs), which are cytochrome P450 metabolites of arachidonic acid and have been demonstrated to have neuroprotective effects. However, little is known about the role of sEH in tau phosphorylation. The present study investigated the role of a sEH inhibitor, 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl] urea (TPPU), on H2 O2 -induced tau phosphorylation and the underlying signaling pathway in human embryonic kidney 293 (HEK293)/Tau cells. We found that the cell viability was increased after TPPU treatment compared to control in oxidative stress. Western blotting and immunofluorescence results showed that the levels of phosphorylated tau at Thr231 and Ser396 sites were increased in H2 O2 -treated cells but dropped to normal levels after TPPU administration. H2 O2 induced an obvious decreased phosphorylation of GSK-3β at Ser9, an inactive form of GSK-3β, while there were no changes of phosphorylation of GSK-3β at Tyr216. TPPU pretreatment maintained GSK-3β Ser 9 phosphorylation. Moreover, Western blotting results showed that TPPU upregulated the expression of p-Akt. The protective effects of TPPU were found to be inhibited by wortmannin (WT, a specific PI3K inhibitor). In conclusion, these results suggested that the protective effect of TPPU on H2 O2 -induced oxidative stress is associated with PI3K/Akt/GSK-3β pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app