Add like
Add dislike
Add to saved papers

Cycloreversion of the CO 2 trimer: a paradigmatic pseudopericyclic [2 + 2 + 2] cycloaddition reaction.

Very recently, the CO2 trimer has been experimentally synthesized, isolated and characterized. This process opens new ways for the withdrawal and storage of this greenhouse gas. The trimer is reported to be stable up to -40 °C, with a lifetime of about 40 min at this temperature. At these or under harsher thermal conditions it reverts to the three monomers. The mechanism of this reaction has been theoretically studied and the electronic character of the associated transition state has been analyzed from a variety of perspectives (energetic, magnetic, electron localization and delocalization functions) which indicate that it has paradigmatic pseudopericyclic character. To allow for a comparative study, the isoelectronic fragmentations of cyclohexane into three units of ethylene and of benzene into three units of acetylene have been included in this work. The study of a similar series of formally forbidden-four-centered [2 + 2] cycloreversions confirmed the pseudopericyclic nature of these reactions when the CO2 dimer or trimer is involved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app