Add like
Add dislike
Add to saved papers

UNSUPERVISED SHAPE PRIOR MODELING FOR CELL SEGMENTATION IN NEUROENDOCRINE TUMOR.

Automated and accurate cell segmentation provides support for many quantitative analyses on digitized neuroendocrine tumor (NET) images. It is a challenging task due to complex variations of cell characteristics. In this paper, we incorporate unsupervised shape priors into an efficient repulsive deformable model for automated cell segmentation on NET images. Unlike other supervised learning based shape models, which usually require a large number of annotated data for training, the proposed algorithm is an unsupervised approach that applies group similarity to shape constraints to avoid any labor intensive annotation. The algorithm is extensively tested on 51 NET images, and the comparative experiments with the state of the arts demonstrate the superior performance of this method using an unsupervised shape model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app