Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

TSTMP: target selection for structural genomics of human transmembrane proteins.

Nucleic Acids Research 2017 January 5
The TSTMP database is designed to help the target selection of human transmembrane proteins for structural genomics projects and structure modeling studies. Currently, there are only 60 known 3D structures among the polytopic human transmembrane proteins and about a further 600 could be modeled using existing structures. Although there are a great number of human transmembrane protein structures left to be determined, surprisingly only a small fraction of these proteins have 'selected' (or above) status according to the current version the TargetDB/TargetTrack database. This figure is even worse regarding those transmembrane proteins that would contribute the most to the structural coverage of the human transmembrane proteome. The database was built by sorting out proteins from the human transmembrane proteome with known structure and searching for suitable model structures for the remaining proteins by combining the results of a state-of-the-art transmembrane specific fold recognition algorithm and a sequence similarity search algorithm. Proteins were searched for homologues among the human transmembrane proteins in order to select targets whose successful structure determination would lead to the best structural coverage of the human transmembrane proteome. The pipeline constructed for creating the TSTMP database guarantees to keep the database up-to-date. The database is available at https://tstmp.enzim.ttk.mta.hu.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app