JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

UVB irradiation induces rapid changes in galanin, substance P and c-fos immunoreactivity in rat dorsal root ganglia and spinal cord.

Peptides 2017 January
Recent studies have shown that UVB irradiation induces primary and secondary hyperalgesia in rats and humans peaking about 24h after UVB exposure. In the present study we investigated the changes in galanin, substance P and c-fos immunoreactivity in rat DRG and spinal cord at the L5 level 2-96h after UVB irradiation. UVB irradiation of the heel area in rats almost increased the skin blood flow two-fold 24h after irradiation as measured by laser Doppler technique. UVB irradiation induced a significant reduction of the proportion of galanin positive DRG neurons for all time points, except at 12h. In the spinal cord, UVB irradiation induced increased immunoreactivity for galanin in the dorsal horn, the area around the central canal and interestingly also in the lateral spinal nucleus 12-96h after exposure. For substance P the proportion of substance P positive neurons was unchanged but UVB irradiation induced increased substance P immunoreactivity in the dorsal part of the spinal cord 48h after irradiation. UVB irradiation also induced c-fos immunoreactivity in the dorsal horn and the area around the central canal 24 and 48h after exposure. This translational model of UVB irradiation will induce rapid changes of neuropeptides implicated in nociceptive signaling in areas known to be of importance for nociception in a time frame, about 24h after exposure, where also neurophysiological alteration have been described in humans and rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app