JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

CCAAT/enhancer binding protein β is required for satellite cell self-renewal.

Skeletal Muscle 2016 December 8
BACKGROUND: Postnatal growth and repair of skeletal muscle relies upon a population of quiescent muscle precursor cells, called satellite cells that can be activated to proliferate and differentiate into new myofibers, as well as self-renew to replenish the satellite cell population. The balance between differentiation and self-renewal is critical to maintain muscle tissue homeostasis, and alterations in this equilibrium can lead to chronic muscle degeneration. The transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) is expressed in Pax7+ satellite cells of healthy muscle and is downregulated during myoblast differentiation. Persistent expression of C/EBPβ upregulates Pax7, inhibits MyoD, and blocks myogenic differentiation.

METHODS: Using genetic tools to conditionally abrogate C/EBPβ expression in Pax7+ cells, we examined the role of C/EBPβ in self-renewal of satellite cells during muscle regeneration.

RESULTS: We find that loss of C/EBPβ leads to precocious differentiation at the expense of self-renewal in primary myoblast and myofiber cultures. After a single muscle injury, C/EBPβ-deficient satellite cells fail to self-renew resulting in a reduction of satellite cells available for future rounds of regeneration. After a second round of injury, muscle regeneration is impaired in C/EBPβ conditional knockout mice compared to wild-type control mice. We find that C/EBPβ can regulate Notch2 expression and that restoration of Notch activity in myoblasts lacking C/EBPβ prevents precocious differentiation.

CONCLUSIONS: These findings demonstrate that C/EBPβ is a novel regulator of satellite cell self-renewal during muscle regeneration acting at least in part through Notch2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app