Add like
Add dislike
Add to saved papers

Impact of Oligonucleotide Structure, Chemistry, and Delivery Method on In Vitro Cytotoxicity.

Single-stranded (ss) 2'-fluoro (2'-F)-modified oligonucleotides (ONs) with a full phosphorothioate (PS) backbone have been reported to be cytotoxic and cause DNA double-strand breaks (DSBs) when transfected into HeLa cells. However, the molecular determinants of these effects have not been fully explored. In this study, we investigated the impact of ON structure, chemistry, delivery method, and cell type on in vitro cytotoxicity and DSBs. We found that ss PS-ONs were more cytotoxic than double-stranded (ds) PS-ONs, irrespective of the 2'-ribose chemistry, inclusive of the 2'-F modification. Cytotoxicity of ss ONs was most affected by the total PS content, with an additional contribution of 2'-F substitutions in HeLa, but not HepG2, cells. The relatively mild cytotoxicity of ds ONs was most impacted by long contiguous PS stretches combined with 2'-F substitutions. None of the tested ds 2'-F-modified PS-ONs caused DSBs, while the previously reported DSBs caused by ss 2'-F-modified PS-ONs were PS dependent. HeLa cells were more sensitive to ON-mediated toxicity when transfected with Lipofectamine 2000 versus Lipofectamine RNAiMax. Importantly, asialoglycoprotein receptor-mediated uptake of N-acetylgalactosamine-conjugated ss or ds PS-ONs, even those with long PS stretches and high 2'-F content, was neither cytotoxic nor caused DSBs at transfection-equivalent exposures. These results suggest that in vitro cytotoxicity and DSBs associated with ONs are delivery method dependent and primarily determined by single-stranded nature and PS content of ONs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app