Add like
Add dislike
Add to saved papers

A Low-Correlation Resting State of the Striatum during Cortical Avalanches and Its Role in Movement Suppression.

PLoS Biology 2016 December
During quiet resting behavior, involuntary movements are suppressed. Such movement control is attributed to cortico-basal ganglia loops, yet population dynamics within these loops during resting and their relation to involuntary movements are not well characterized. Here, we show by recording cortical and striatal ongoing population activity in awake rats during quiet resting that intrastriatal inhibition maintains a low-correlation striatal resting state in the presence of cortical neuronal avalanches. Involuntary movements arise from disturbed striatal resting activity through two different population dynamics. Nonselectively reducing intrastriatal γ-aminobutyric acid (GABA) receptor-A inhibition synchronizes striatal dynamics, leading to involuntary movements at low rate. In contrast, reducing striatal interneuron (IN)-mediated inhibition maintains decorrelation and induces intermittent involuntary movements at high rate. This latter scenario was highly effective in modulating cortical dynamics at a subsecond timescale. To distinguish intrastriatal processing from loop dynamics, cortex-striatum-midbrain cultures, which lack feedback to cortex, were used. Cortical avalanches in vitro were accompanied by low-correlated resting activity in the striatum and nonselective reduction in striatal inhibition synchronized striatal neurons similar to in vivo. Importantly, reduction of inhibition from striatal INs maintained low correlations in the striatum while reorganizing functional connectivities among striatal neurons. Our results demonstrate the importance of two major striatal microcircuits in distinctly regulating striatal and cortical resting state dynamics. These findings suggest that specific functional connectivities of the striatum that are maintained by local inhibition are important in movement control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app