EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Additional Value of Early-Phase 18F-FP-CIT PET Image for Differential Diagnosis of Atypical Parkinsonism.

PURPOSE: Regional cerebral perfusion is coupled to metabolism in general. Early perfusion dominant imaging using F-FP-CIT PET (pCIT) may provide complementary information to delayed dopamine transporter dominant images. We investigated the ability of pCIT to differentiate atypical Parkinson disorder from Parkinson disease (PD) compared to FDG and the image quality for optimizing the acquisition time.

METHODS: Sixty-seven subjects [PD, 23 subjects; multiple system atrophy-cerebellar type (MSA-C), 27 subjects; MSA-Parkinson type (MSA-P), 12 subjects; and progressive supranuclear palsy (PSP), 5 subjects] underwent F-FP-CIT and FDG PET. Using dynamic PET data acquired during the first 10 minutes after F-FP-CIT administration, we generated potential perfusion images of 0 to 5 (pCIT-5m), 0 to 7 (pCIT-7m), and 0 to 10 (pCIT-10m) minutes. We compared regional uptake between groups in pCIT and FDG images and image quality among pCIT images using visual, quantitative, or statistical parametric mapping analyses.

RESULTS: Regional cerebral uptake of pCITs correlated well to that of the FDG images (R > 0.5, all). Multiple system atrophy-cerebellar type and MSA-P groups show different regional uptake patterns compared with PD group on pCITs in quantitative and statistical parametric mapping analyses, analogous to FDG images, but not in the PSP group. In visual analysis, concordance rates between each pCIT and FDG image were high (92.3%-96.0%, regional; 86.2%-93.1%, diagnostic), and there was no significant difference among pCITs. However, pCIT-10m discriminated PSP better than others and showed higher signal-to-noise ratio (P = 0.001).

CONCLUSION: F-FP-CIT PETs with the first 10 minutes could be useful for the differential diagnosis of atypical Parkinson disorder by providing complementary FDG-like information to the dopamine transporter binding on late-phase FP-CIT images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app