JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Antimicrobial resistance of Salmonella spp. isolated from food

This review summarizes current data on resistance among Salmonella spp. isolates of food origin from countries in different regions of the world. The mechanisms of resistance to different groups of antimicrobial compounds are also considered. Among strains resistant to quinolones and/or fluoroquinolones the most prevalent mechanism is amino acid substitutions in quinolone resistance-determining region (QRDR) of genes gyrA, parC but mechanism of growing importance is plasmid-mediated quinolone resistance (PMQR) associated with genes qnrA, qnrB, qnrC, qnrD, qnrS but frequency of their detection is different. Resistance to sulfonamides is mostly associated with genes sul1 and sul2, while resistance to trimethoprim is associated with various variants of dhfr ( dfr) genes. Taking into account Salmonella spp. strains isolated from food, resistance to β-lactams is commonly associated with β-lactamases encoding by blaTEM genes. However strains ESBL and AmpC – positive are also detected. Resistance to aminoglicosides is commonly result of enzymatic inactivation. Three types of aminoglycoside modifying enzyme are: acetyltransferases (AAC), adenyltransferases (ANT) and phosphotransferases (APH). Resistance to tetracyclines among Salmonella spp. isolated from food is most commonly associated with active efflux. Among numerous genetic determinants encoding efflux pumps tetA, tetB, tetC, tetD, tetE and tetG are reported predominatingly. One of the most common mechanisms of resistance against chloramphenicol is its inactivation by chloramphenicol acetyltrasferases (CATs), but resistance to this compound can be also mediated by chloramphenicol efflux pumps encoded by the genes cmlA and floR. It is important to monitor resistance of Salmonella isolated from food, because the globalization of trade, leading to the long-distance

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app