Add like
Add dislike
Add to saved papers

Downregulation of LAPTM5 suppresses cell proliferation and viability inducing cell cycle arrest at G0/G1 phase of bladder cancer cells.

Our transcriptome analysis revealed in bladder cancer (BCa) tissues a significant induction of lysosomal-associated multispanning membrane protein 5 (LAPTM5), a lysosomal membrane protein preferentially expressing in immune cells and hematopoietic cells. Transportation of LAPTM5 from Golgi to lysosome could be inhibited by deficiency of Nedd4, a key member of E3 ubiquitin ligase family overexpressing in invasive BCa and promoting its progression. Therefore, we hypothesize that LAPTM5 may be closely correlated with BCa tumorigenesis. In human BCa tissues, we observed that LAPTM5 was significantly induced at both mRNA and protein levels, which is consistent with our microarray result. Furthermore, we established a BCa cell model with downregulated LAPTM5, revealing a significantly delayed growth rate in the BCa cells with knockdown of LAPTM5. Moreover, cell cycle arrest at G0/G1 phase was triggered by decreased LAPTM5 as well, which could lead to delayed BCa cell growth. In contrast, no significant alteration of apoptosis in the BCa cells with downregulated LAPTM5 was noticed. Analysis of the changes of migration and invasion, showed significant reduced LAPTM5 suppressed cell metastasis. Furthermore, proteins involved in epithelial-mesenchymal transition (EMT) were strongly altered, which plays a central role in metastasis. In addition, phosphorylated ERK1/2 and p38, key members of mitogen-activated protein kinase (MAPK) family regulating BCa tumorigenesis, were strongly decreased. Taken together, our results suggested that decreased LAPTM5 inhibited proliferation and viability, as well as induced G0/G1 cell cycle arrest possibly via deactivation of ERK1/2 and p38 in BCa cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app