Add like
Add dislike
Add to saved papers

Biological function and mechanism of miR-33a in prostate cancer survival and metastasis: via downregulating Engrailed-2.

OBJECTIVE: Recent studies have identified Engrailed-2 (EN-2), a homeobox-containing transcription factor, as a candidate oncogene in prostate cancer (PC). Therapeutic targeting on EN-2, however, is limited because the mechanism underlying EN-2 overexpression in prostatic cancer cells is unknown. This study was to investigate the potential regulatory role of miR-33a on EN-2 expression and explore this signaling axis in ability of prostate cancer survival and metastasis.

METHODS: The relative expression of miR-33a and EN-2 in paired prostate cancer tissue and adjacent normal tissue as well as in prostate cancer cell lines, PC3 and DU145, was determined using quantitative real-time PCR or western blot, respectively. Cells survival, migration and invasion were evaluated by assays of MTT, TUNEL and Boyden chamber assays, respectively. Direct regulation of EN-2 by miR-33a was examined by luciferase reporter assay.

RESULTS: The data showed that miR-33a was upregulated and EN-2 was downregulated in both prostate cancer tissue and prostate cancer cells. miR-33a overexpression suppresses prostate cancer cell survival and metastasis. miR-33a can directly act on EN-2 expression by binding to 3'UTR of its mRNA. Also, miR-33a negatively regulated EN-2 mRNA and protein expression. In pcDNA-EN-2 and miR-33a mimic co-transfected PC3 and DU145 cells, EN-2 overexpression reverses the anti-cell survival and metastasis actions of miR-33a overexpression. The pivotal role of miR-33a in inhibiting prostate tumor growth was confirmed in xenograft models of prostate cancer.

CONCLUSION: Our data suggest that the functional interaction of miR-33a and EN-2 is involved in tumorigenesis of prostate cancer. Also in this process EN-2 serves as a negative responder for miR-33a.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app