Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Two SERK Receptor-Like Kinases Interact with EMS1 to Control Anther Cell Fate Determination.

Plant Physiology 2017 January
Cell signaling pathways mediated by leucine-rich repeat receptor-like kinases (LRR-RLKs) are essential for plant growth, development, and defense. The EMS1 (EXCESS MICROSPOROCYTES1) LRR-RLK and its small protein ligand TPD1 (TAPETUM DETERMINANT1) play a fundamental role in somatic and reproductive cell differentiation during early anther development in Arabidopsis (Arabidopsis thaliana). However, it is unclear whether other cell surface molecules serve as coregulators of EMS1. Here, we show that SERK1 (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1) and SERK2 LRR-RLKs act redundantly as coregulatory and physical partners of EMS1. The SERK1/2 genes function in the same genetic pathway as EMS1 in anther development. Bimolecular fluorescence complementation, Förster resonance energy transfer, and coimmunoprecipitation approaches revealed that SERK1 interacted biochemically with EMS1. Transphosphorylation of EMS1 by SERK1 enhances EMS1 kinase activity. Among 12 in vitro autophosphorylation and transphosphorylation sites identified by tandem mass spectrometry, seven of them were found to be critical for EMS1 autophosphorylation activity. Furthermore, complementation test results suggest that phosphorylation of EMS1 is required for its function in anther development. Collectively, these data provide genetic and biochemical evidence of the interaction and phosphorylation between SERK1/2 and EMS1 in anther development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app