Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Voluntary running improves depressive behaviours and the structure of the hippocampus in rats: A possible impact of myokines.

Brain Research 2017 Februrary 16
This study investigated the impact of voluntary exercise on depressive behaviours, serum and hippocampal levels of myokines, and histopathological features of hippocampal formation in rats. Depressed rats were allowed to voluntarily run on a wheel for 3weeks. Locomotor activity was assessed by a forced swimming test and the myokine levels in sera and hippocampal homogenates were measured using Enzyme-linked Immunosorbent Assay. Brain sections were analysed for hippocampal structure and neuronal counts. Voluntary running produced significant increase in the distance moved by rats and significant decrease in immobility duration. After voluntary running, there were significant increases in serum and hippocampal brain-derived neurotrophic factor (BDNF) and macrophage migration inhibitory factor (MIF), significant increase in hippocampal vascular endothelial growth factor (VEGF), and significant decrease in serum interleukin-6 (IL-6). Significant correlation was detected between the serum levels of BDNF and MIF (r=0.276) as well as IL-6 (r=-0.340). In addition, significant correlation was observed between hippocampal BDNF levels and MIF (r=0.500) and VEGF levels (r=0.279). After voluntary running, there was significant decrease in number degenerated neurons in hippocampal areas and significant increase in number of healthy neurons in the upper limb of the dentate gyrus, but not in its lower limb, compared to depression group. This study showed the relation of myokines to the development and/or relief of depression, as well as the correlation between serum and hippocampal myokine levels. Attention should be paid to studying the biological effects of myokines on different hippocampal areas that could respond differently to treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app