Add like
Add dislike
Add to saved papers

The enhanced reduction of C- and N-DBP formation in treatment of source water containing Microcystis aeruginosa using a novel CTSAC composite coagulant.

This study investigated the effect of a chitosan-aluminium chloride (CTSAC) composite coagulation process on reducing the formation of algal organic matters (AOM) related carbonaceous disinfection by-products (C-DBPs) and nitrogenous disinfection by-products (N-DBPs), by removing or adsorbing their precursors. Compared with aluminium chloride (AC) and chitosan (CTS) alone, CTSAC significantly enhanced the removal of dissolved organic matter (DOC), polysaccharide, protein and humic acids, attaining removals of 64.95%, 80.78%, 70.85% and 44.50%, respectively. Notably, the three-dimensional excitation and emission matrix (3D-EEM) combined with molecular weight (MW) fractionation analysis revealed that CTSAC was not only effective for removing high-MW AOM, but also for the low-MW fractions that are important in forming DBPs. In addition, the CTSAC coagulation was proven to enhance the removal of aromatic polypeptide/amino acid-like materials and aliphatic amines, which have high N-nitrosodimethylamine formation potential. Efficient AOM removal by the CTSAC coagulation resulted in significant reduction of both AOM-related C-DBPs (63.54%) and N-DBPs (71%), while AC coagulation did not substantially reduce the formation of tribromomethane, 1,1,1-trichloropropanone or N-nitrosodimethylamine, and CTS coagulation alone did not achieve any obvious reduction in trichloronitromethane. Fourier transform infrared (FT-IR) spectroscopy analysis confirmed the interaction of CTS and AC in the CTSAC composite coagulation, which contributed to the improved AOM removal performance of CTSAC, and, in this case, reduced the formation of C- and N-DBPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app