Add like
Add dislike
Add to saved papers

Adsorption of perfluorooctane sulfonate on soils: Effects of soil characteristics and phosphate competition.

Chemosphere 2017 Februrary
Perfluorooctane sulfonate (PFOS) is an emerging contaminant, whose presence has been detected in different compartments of the environment in many countries. In this study, the effects of soil characteristics and phosphate competition on the adsorption of PFOS on soils were investigated. Results from batch sorption experiments showed that all the adsorption isotherms of PFOS on three tested soils were nonlinear. In experiments without the addition of phosphate (P) to the soil solution, the Freundlich sorption affinity (Kf) of PFOS on S (original soil), S1 (soil from which soil organic matter (SOM) had been removed), and S2 (soil from which both SOM and ferric oxides had been removed) were 23.13, 10.37 and 15.95, respectively. The results suggested that a high amount of SOM in soil can increase the sorption affinity of PFOS on soils and that a greater amount of ferric oxides can reduce it. The addition of P in the soil solution reduced the Kf of PFOS on S, S1, and S2 by approximately 25%, 50%, and 15%, respectively. For the binary system of PFOS and P, soil with higher ferric oxide content showed greater Kf reduction after P addition; whereas soil with higher SOM content showed less Kf reduction. Our results suggest that for soils dominated by ferric oxides, P is a more effective competitor than PFOS for the adsorption sites in the binary system; whereas in soils containing more SOM, P is a weak competitor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app