EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor.

The long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial activity and microbial community of activated sludge were investigated in a sequencing batch reactor (SBR). The SBR performance had no evident change at 0-10 mg/L CuO NPs, whereas the CuO NPs concentration at 30-60 mg/L affected the COD, NH4 + -N and soluble orthophosphate (SOP) removal, nitrogen and phosphorus removal rate and microbial enzymatic activity of activated sludge. Some CuO NPs might be absorbed on the surface of activated sludge or penetrate the microbial cytomembrane into the microbial cell interior of activated sludge. Compared to 0 mg/L CuO NPs, the reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release increased by 43.6% and 56.4% at 60 mg/L CuO NPs, respectively. The variations of ROS production and LDH release demonstrated that CuO NPs could induce the toxicity towards the microorganisms and destroy the integrity of microbial cytomembrane in the activated sludge. High throughput sequencing of 16S rDNA indicated that CuO NPs could evidently impact on the microbial richness, diversity and composition of activated sludge in the SBR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app