Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Self-Assembled Supramolecular Nanogels as a Safe and Effective Drug Delivery Vector for Cancer Therapy.

Simple construction and manipulation of low-molecular-weight supramolecular nanogels, based on the introduction of multiple hydrogen bonding interactions, with the desired physical properties to achieve effective and safe delivery of drugs for cancer therapy remain highly challenging. Herein, a novel supramolecular oligomer cytosine (Cy)-polypropylene glycol containing self-complementary multiple hydrogen-bonded Cy moieties is developed, which undergoes spontaneous self-assembly to form nanosized particles in an aqueous environment. Phase transitions and scattering studies confirm that the supramolecular nanogels can be readily tailored to obtain the desired phase-transition temperature and temperature-induced release of the anticancer drug doxorubicin (DOX). The resulting nanogels exhibit an extremely high load carrying capacity (up to 24.8%) and drug-entrapment stability, making the loading processes highly efficient. Importantly, in vitro cytotoxicity assays indicate that DOX-loaded nanogels possess excellent biosafety for drug delivery applications under physiological conditions. When the environmental temperature is increased to 40 °C, DOX-loaded nanogels trigger rapid DOX release and exert cytotoxic effects, significantly reducing the dose required compared to free DOX. Given its simplicity, low cost, high reliability, and efficiency, this newly developed temperature-responsive nanocarrier has highly promising potential for controlled release drug delivery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app