Add like
Add dislike
Add to saved papers

Thermodynamic Insights on a Bistable Acid-Base Switchable Molecular Shuttle with Strongly Shifted Co-conformational Equilibria.

Bistable [2]rotaxanes in which the affinities of the two stations can be reversed form the basis of molecular shuttles. Gaining quantitative information on such rotaxanes in which the ring distribution between the two stations is largely nonsymmetric has proven to be very challenging. Herein, we report on two independent experimental methodologies, based on luminescence lifetime measurements and acid-base titrations, to determine the relative populations of the two co-conformations of a [2]rotaxane. The assays yield convergent results and are sensitive enough to measure an equilibrium constant (K≈4000) out of reach for NMR spectroscopy. We also estimate the ring distribution constant in the switched (deprotonated) state (K'<10-4 ), and report the highest positional efficiency for stimuli-induced shuttling to date (>99.92 %). Finally, our results show that the pKa of the pH-responsive station depends on the ring affinity of the pH-insensitive station, an observation that paves the way for the design of new artificial allosteric systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app