Add like
Add dislike
Add to saved papers

Hepatocarcinogenesis in transgenic mice carrying hepatitis B virus pre-S/S gene with the sW172* mutation.

Oncogenesis 2016 December 6
Hepatitis B virus (HBV) carrying the rtA181T/sW172* mutation conferred cross-resistance to adefovir and lamivudine. Cell-based and clinical studies indicated that HBV carrying this mutation had an increased oncogenic potential. Herein, we created transgenic mouse models to study the oncogenicity of the HBV pre-S/S gene containing this mutation. Transgenic mice were generated by transfer of the HBV pre-S/S gene together with its own promoter into C57B6 mice. Four lines of mice were created. Two of them carried wild-type gene and produced high and low levels of HBV surface antigen (HBsAg) (TgWT-H and L). The other two carried the sW172* mutation with high and low intrahepatic expression levels (TgSW172*-H and L). When sacrificed 18 months after birth, none of the TgWT mice developed hepatocellular carcinoma (HCC), whereas 6/26 (23.1%) TgSW172*-H and 2/24 (8.3%) TgSW172*-L mice developed HCC (TgWT vs TgSW172*; P=0.0021). Molecular analysis of liver tissues revealed significantly increased expression of glucose-regulated protein 78 and phosphorylated extracellular signal-regulated kinases 1 in TgSW172* mice, and decreased expression of B-cell lymphoma-extra large in TgSW172*-H mice. Higher proportion of apoptotic cells was found in TgSW172*-H mice, accompanied by increased cyclin E levels, suggesting increased hepatocyte turnover. Combined analysis of complimentary DNA microarray and microRNA array identified microRNA-873-mediated reduced expression of the CUB and Sushi multiple domains 3 (CSMD3) protein, a putative tumor suppressor, in TgSW172* mice. Our transgenic mice experiments confirmed that HBV pre-S/S gene carrying the sW172* mutation had an increased oncogenic potential. Increased endoplasmic reticulum stress response, more rapid hepatocyte turnover and decreased CSMD3 expression contributed to the hepatocarcinogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app