Add like
Add dislike
Add to saved papers

Investigating the behavior of various cocatalysts on LaTaON 2 photoanode for visible light water splitting.

We performed a comparative study on the photoelectrochemical performance of LaTaON2 loaded with NiOx , Ni0.7 Fe0.3 Ox , CoOx and IrOx as cocatalysts. Ni-based oxides lead to the highest improvement on the photoelectrochemical performance, while CoOx and IrOx also enhance the performance though to a lower extent, but they simultaneously introduce more pseudocapacitive current thus resulting in an inefficient utilization of the photo-generated holes. Repetitive voltage cycling between 1.0 VRHE and 1.6 VRHE transforms the NiOx and Ni0.7 Fe0.3 Ox into oxyhydroxides known to possess higher catalytic activities. However, these oxyhydroxides lead to lower photoelectrochemical performance compared to the as-loaded oxides, most probably due to the decay of the passivation centers at the photoelectrode-cocatalyst interface. High catalytic activities cannot be achieved without sufficient passivation of surface recombination states. Despite that the photoelectrochemical performance of LaTaON2 can be improved by cocatalysts, the maximum achievable photocurrent density is still not comparable to that reported for other oxynitride compounds. Our study suggests that poor electronic conductivity or severe bulk recombination of the photo-generated electron-hole pairs are the main limiting factors for the photon-to-current conversion efficiency in LaTaON2 photoanodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app