Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A high-throughput fluorimetric microarray with enhanced fluorescence and suppressed "coffee-ring" effects for the detection of calcium ions in blood.

Scientific Reports 2016 December 6
A rapid, ultrasensitive, and high-throughput fluorimetric microarray method has been developed using hydrophobic pattern as the microarray substrate and 3-aminopropyltriethoxysilane-coupled carboxylic acid calcium (APS-CCA) as the fluorescent probes for sensing Ca2+ ions in blood. The hydrophobic pattern of the developed Ca2+ analysis microarray could largely suppress the "coffee-ring" effects to facilitate the better distribution density of testing microspots toward the high-throughput detections, and especially prevent the cross-contamination of the multiple samples between adjacent microspots. Moreover, the use of APS matrix could endow the CCA probe the enhanced environmental stability and fluorescence intensity, which is about 2.3-fold higher than that of free CCA. The interactions between APS-CCA and Ca2+ ions were systematically characterized by UV-vis and fluorescence measurements including microscopy imaging. It was demonstrated that the fluorimetric microarray could display the strong capacity of specifically sensing Ca2+ ions with the minimal interferences from blood backgrounds. Such an APS-CCA-based fluorimetric microarray can allow for the analysis of Ca2+ ions down to 0.0050 mM in blood, promising a highly sensitive and selective detection candidate for Ca2+ ions to be applied in the clinical laboratory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app