Add like
Add dislike
Add to saved papers

Leveraging population information in family-based rare variant association analyses of quantitative traits.

Genetic Epidemiology 2017 Februrary
Confounding due to population substructure is always a concern in genetic association studies. Although methods have been proposed to adjust for population stratification in the context of common variation, it is unclear how well these approaches will work when interrogating rare variation. Family-based association tests can be constructed that are robust to population stratification. For example, when considering a quantitative trait, a linear model can be used that decomposes genetic effects into between- and within-family components and a test of the within-family component is robust to population stratification. However, this within-family test ignores between-family information potentially leading to a loss of power. Here, we propose a family-based two-stage rare-variant test for quantitative traits. We first construct a weight for each variant within a gene, or other genetic unit, based on score tests of between-family effect parameters. These weights are then used to combine variants using score tests of within-family effect parameters. Because the between-family and within-family tests are orthogonal under the null hypothesis, this two-stage approach can increase power while still maintaining validity. Using simulation, we show that this two-stage test can significantly improve power while correctly maintaining type I error. We further show that the two-stage approach maintains the robustness to population stratification of the within-family test and we illustrate this using simulations reflecting samples composed of continental and closely related subpopulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app