Case Reports
Journal Article
Add like
Add dislike
Add to saved papers

Cardiac autophagic vacuolation in severe X-linked myopathy with excessive autophagy.

X-linked myopathy with excessive autophagy (XMEA), caused by mutations of the VMA21 gene, is a strictly skeletal muscle disease. Extensive studies in yeast established VMA21 as the master assembly chaperone of V-ATPase, the complex multisubunit proton pump that acidifies organelles and that is vital to all mammalian tissues. As such, skeletal muscle disease exclusivity in XMEA is highly surprising. We now show that the severest VMA21 mutation, c.164-6t>g, does result in XMEA-typical pathology with autophagic vacuolar changes outside skeletal muscle, namely in the heart. However, even patients with this mutation do not exhibit clinical extramuscular disease, including cardiac disease, despite extreme skeletal muscle wasting to the extent of ventilation dependence. Uncovering the unique skeletal muscle vulnerability to defective organellar acidification, and resultant tissue-destructive excessive autophagy, will be informative to the understanding of muscle physiology. Alternatively, understanding extramuscular resistance to VMA21 mutation might disclose heretofore unknown mammalian V-ATPase assembly chaperones other than VMA21.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app