Add like
Add dislike
Add to saved papers

Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany.

Important health relevance has been suggested for ultrafine particles (UFP) and ozone, but studies on long-term effects are scarce, mainly due to the lack of appropriate spatial exposure models. We designed a measurement campaign to develop land use regression (LUR) models to predict the spatial variability focusing on particle number concentration (PNC) as indicator for UFP, ozone and several other air pollutants in the Augsburg region, Southern Germany. Three bi-weekly measurements of PNC, ozone, particulate matter (PM10 , PM2.5 ), soot (PM2.5 abs) and nitrogen oxides (NOx , NO2 ) were performed at 20 sites in 2014/15. Annual average concentration were calculated and temporally adjusted by measurements from a continuous background station. As geographic predictors we offered several traffic and land use variables, altitude, population and building density. Models were validated using leave-one-out cross-validation. Adjusted model explained variance (R2 ) was high for PNC and ozone (0.89 and 0.88). Cross-validation adjusted R2 was slightly lower (0.82 and 0.81) but still indicated a very good fit. LUR models for other pollutants performed well with adjusted R2 between 0.68 (PMcoarse ) and 0.94 (NO2 ). Contrary to previous studies, ozone showed a moderate correlation with NO2 (Pearson's r=-0.26). PNC was moderately correlated with ozone and PM2.5 , but highly correlated with NOx (r=0.91). For PNC and NOx , LUR models comprised similar predictors and future epidemiological analyses evaluating health effects need to consider these similarities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app