Add like
Add dislike
Add to saved papers

Application of a macrocyclic compound, bambus[6]uril, in tailor-made liquid membranes for highly selective electromembrane extractions of inorganic anions.

Analytica Chimica Acta 2017 January 16
A tailor-made liquid membrane consisting of a resistive organic solvent (nitrobenzene, NB) and a highly selective non-ionic macrocyclic compound (bambus[6]uril, BU6) was employed for electromembrane extraction (EME) of inorganic anions. BU6 facilitates strong host-guest interactions of its internal cavity with selected inorganic anions only and its presence in the liquid membrane ensured excellent selectivity of the EME process. EME transfers were directly related to association constants between BU6 and inorganic anions and nearly absolute selectivity was achieved for EMEs of iodide, bromide and perchlorate. Major inorganic anions (chloride, nitrate, sulphate and carbonate), which exhibit low interactions with BU6 cavity, were efficiently eliminated from the EME transfer. No interferences were observed for EMEs of target analytes from samples containing up to 100.000-fold higher concentrations of the major anions. Addition of species-specific macrocyclic modifiers to free and supported liquid membranes might thus open new directions in fine-tuning of EME selectivity. At optimized EME conditions (polypropylene hollow fiber impregnated with NB + 3% (w/w) BU6, extraction voltage 25 V, extraction time 15 min, deionized water as acceptor solution) perchlorate was selectively extracted from tap water at concentrations below the guideline value recommended by United States Environmental Protection Agency. Excellent selectivity of the tailor-made liquid membrane was further demonstrated by EME of bromide from sea water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app