Add like
Add dislike
Add to saved papers

Predicting optimal wet granulation parameters for extrusion-spheronisation of pharmaceutical pellets using a mixer torque rheometer.

Mixer torque rheometry (MTR) was evaluated as a pre-production (pre-formulation and optimization) tool for predicting ideal liquid-to-solid ratios (L/S) for extrusion-spheronisation of a wide range of APIs using 10g formulations. APIs of low, medium and high solubility were formulated at low and high loadings (15 and 40% w/w, respectively) with PVP as binder (5%) and MCC as the major excipient. L/S corresponding to the maximum torque produced during wet massing in the MTR, L/S(maxT), was 0.8 for the low solubility APIs, which decreased to 0.6 for some of the more soluble APIs, especially at high loadings. Formulations extruded-spheronised at L/SmaxT) produced pellets of acceptable size (between 900 and 1400um) for all formulations, but mostly of unacceptable shape (dumb-bells of aspect ratio 1.2). Increasing L/S by 25% successfully produced spherical or near-spherical (aspect ratio 1.1) pellets for all formulations except one of the highly soluble APIs (piracetam) at high loading. Overall, MTR was demonstrated to be a useful pre-formulation and optimization tool in extrusion-spheronisation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app