Add like
Add dislike
Add to saved papers

Evaluating the feasibility of ratio control strategy for achieving partial nitritation in a continuous floccular sludge reactor: Experimental demonstration.

To investigate the applicability of ratio control strategy to other systems, a continuous floccular sludge reactor was used in this study. It was found that nitrite accumulation was barely detected throughout 70days' investigation, being the average concentration in the effluent of 0.7±0.4mg/L. Batch experiments indicated that low dissolved oxygen (DO<0.3mg·L-1 ) greatly repressed the ammonium oxidizing bacteria (AOB) but only slightly inhibited the nitrite oxidizing bacteria (NOB). However, high-throughput sequencing revealed that the ratio of abundance between Nitrospira and Nitrosomonas, being the dominant NOB and AOB respectively, was considerably low (1.2%/18.7%). The weak oxygen gradients in floccular sludge and the selectively enriched K-strategist NOB Nitrospira under oxygen-limited conditions were both contributed to the failure of achieving partial nitritation; therefore, the rapid start-up of partial nitritation process based on proposed ratio control strategy is not feasible for continuous floccular sludge systems treating low-strength wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app