Add like
Add dislike
Add to saved papers

Removal of 2-MIB and geosmin by electrogenerated persulfate: Performance, mechanism and pathways.

Chemosphere 2017 Februrary
In this study, the degradation of 2-methylisoborneol (2-MIB) and geosmin (GSM) was evaluated by electrochemical oxidation (EO) using boron-doped diamond (BDD) electrode. Both 2-MIB and GSM could be degraded efficiently in sulfate electrolyte compared to inert nitrate or perchlorate electrolytes, implying that in-situ generated persulfate may be responsible for contaminants degradation. The observed linear relationship between 2-MIB (GSM) degradation rates and persulfate generation rates further proved that the in-situ generated persulfate enhanced 2-MIB (GSM) degradation. Moreover, a divided electrolytic cell was employed to investigate the effect of cathodic reactions on contaminants degradation and persulfate generation, and results confirmed that both anodic and cathodic reactions participated in 2-MIB (GSM) degradation. High current density and low solution pH were found to be favorable for 2-MIB and GSM degradation. The degradation intermediates were identified and the possible pathways of 2-MIB and GSM degradation were proposed. This study indicated that the EO process with BDD anode could be considered as a potential alternative for the removal of 2-MIB and GSM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app